Bài 24 trang 97 SGK Hình học 10

Dây cung của elip (E): \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1  (0 < b < a)\) vuông góc với trục lớn tại tiêu điểm có độ dài là:

A. \({{2{c^2}} \over a}\)                      B. \({{2{b^2}} \over a}\)                            

C. \({{2{a^2}} \over c}\)                      D. \({{{a^2}} \over c}\)

Lời giải

Đường thẳng \(Δ\) đi qua tiêu điểm \(F(c; 0)\) của elip (E): \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1(0 < b < a)\) và vuông góc với trục lớn của phương trình :\( x – c = 0\).

\(Δ\) cắt \((E)\) tại hai điểm \(M\) và \(N\) có tọa độ là nghiệm của hệ phương trình:

\(\left\{ \matrix{ x - c = 0 \hfill \cr {{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = c \hfill \cr y = \pm {{{b^2}} \over a} \hfill \cr} \right.\)

Độ dài dây cung của \((E)\) là độ dài đoạn thẳng \(MN = {{2{b^2}} \over a}\)

Chọn B


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”