a) Ta có \((AA’, DD’)\parallel (BB’, CC’)\)
\((MNP)\cap (AA’, DD’)=MP\)
Suy ra giao tuyến của \((MNP)\) và \((BB’, CC’)\) song song với \(MP\).
Ta có \(N\in (MNP)\cap (BB',CC')\)
\(\Rightarrow (MNP)\cap (BB',CC')=Nx\),
\(Nx\parallel MP\).
\(\Rightarrow (MNP)\cap (BB',CC')\)
\(=Nx\cap BB'=Q\)
b) Ta có
\((MNP)\cap AA'\), \(BB'\), \(CC'\), \(DD'\) lần lượt tại \(M\), \(P\), \(N\), \(Q\).
\(\Rightarrow (MNP)\) cắt hình hộp theo thiết diện \(MPNQ\).
Ta có
\(\left\{ \begin{array}{l} (AA’, BB’)\parallel (DD’, CC’)\\(MNP)\cap (AA’, BB’)=MQ\\(MNP)\cap (DD’, CC’)=PN\end{array} \right.\)
\(\Rightarrow MQ\parallel PN\)
Mà theo câu a) \(MP\parallel NQ\)
\(\Rightarrow\) tứ giác \(MQNP\) là hình bình hành.
Vậy \((MNP)\) cắt hình hộp theo thiết diện \(MPNQ\) là hình bình hành.
c) Th1: \(P\) không phải là trung điểm của \(DD'\)
Gọi \(H = PN \cap DC,K = MP \cap AD\). Ta có \(d = HK\) là giao tuyến của mặt phẳng (MNP) với mặt phẳng \((ABCD)\) của hình hộp. Chú ý rằng giao điểm \(E = AB \cap MQ\) cũng nằm trên giao tuyến \(d\) nói trên.
Th2: \(P\) là trung điểm của \(DD'\)
Khi đó \(MP\parallel AD, AD\subset (ABCD)\)
\(\Rightarrow MP\parallel (ABCD)\)
Và \(PN\parallel DC, DC\subset (ABCD)\)
\(\Rightarrow PN\parallel (ABCD)\)
Mà \(MP, PN\subset (MNP)\)
\(\Rightarrow (MNP)\parallel (ABCD)\) khi đó hai mặt phẳng không có giao tuyến.