Theo định lí cô sin ta có:
\({\mathop{\rm cosA}\nolimits} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)\( = \dfrac{{{{18}^2} + {{20}^2} - {{14}^2}}}{{2.18.20}} = \dfrac{{528}}{{720}} \approx 0,7333\)
Vậy \(\widehat A \approx {42^0}50'\)
\(\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)\( = \dfrac{{{{14}^2} + {{20}^2} - {{18}^2}}}{{2.14.20}} = \dfrac{{272}}{{560}} \approx 0,4857\)
Vậy \(\widehat B \approx {60^0}56'\)
\(\widehat C = {180^0} - \left( {\widehat A + \widehat B} \right)\)\( \approx {180^0} - \left( {{{42}^0}50' + {{60}^0}56'} \right) = {76^0}14'\)