Trang chủ
Lớp 12 »
Môn Toán »
SBT Giải Tích 12 »
Bài 4: Hàm số mũ. Hàm số logarit
Tìm \(\displaystyle x\), biết \(\displaystyle {\left( {\sqrt 3 - \sqrt 2 } \right)^x} = \sqrt 3 + \sqrt 2 \).
A. \(\displaystyle x = 1\) B. \(\displaystyle x = 2\)
C. \(\displaystyle x = \frac {1}{2}\) D. \(\displaystyle x = - 1\)
Ta có: \(\displaystyle \left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right) = 1\) \(\displaystyle \Rightarrow \sqrt 3 + \sqrt 2 = \frac {1}{{\sqrt 3 - \sqrt 2 }} = {\left( {\sqrt 3 - \sqrt 2 } \right)^{ - 1}}\)
\(\displaystyle \Rightarrow {\left( {\sqrt 3 - \sqrt 2 } \right)^x} = \sqrt 3 + \sqrt 2 = {\left( {\sqrt 3 - \sqrt 2 } \right)^{ - 1}}\) \(\displaystyle \Leftrightarrow x = - 1\).
Chọn D.
Quote Of The Day
“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”