Bài 2.45 trang 83 SBT hình học 11

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình thang (đáy lớn \(AD\)). Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) và \(J\) lần lượt là trung điểm của \(SB\) và \(SC\).

a) Xác định giao điểm \(M\) của \( AI\) và \((SCD)\).

b) Chứng minh \(IJ\parallel \left( {SAD} \right)\).

c) Xác định thiết diện của hình chóp cắt  bởi mp \((P)\) qua \(I\), song song với \(SD\) và \(AC\).

Lời giải

a) Gọi \(O' = AB \cap C{\rm{D}},M = AI \cap SO'\)

Ta có: \(M = AI \cap \left( {SC{\rm{D}}} \right)\)

b)

\(\eqalign{
& IJ\parallel BC \Rightarrow IJ\parallel AD \cr 
& \Rightarrow IJ\parallel \left( {SAD} \right) \cr} \)

c)

Đường thẳng qua \(I\) song song với \(SD\) cắt \(BD\) tại \(K\).

Do \({{OB} \over {O{\rm{D}}}} = {{BC} \over {A{\rm{D}}}} < 1\) nên \(OB < OD\).

Do đó điểm \(K\) thuộc đoạn \(OD\).

Qua \(K\), kẻ đường thẳng song song với \(AC \) cắt \(DA, DC, BA\)  lần lượt tại \(E, F, P\).

Gọi \(R = IP \cap SA\). Kéo dài \(PI\) cắt \(SO’\) tại \(N\)

Gọi \(L = NF \cap SC\)

Ta có thiết diện là ngũ giác \(IREFL\).