Cho hình nón tròn xoay có đỉnh là \(S\), \(O\) là tâm của đường tròn đáy, đường sinh bằng \(a\sqrt 2 \) và góc giữa đường sinh và mặt phẳng đáy bằng \({60^0}\). Diện tích xung quanh \({S_{xq}}\) của hình nón và thể tích \(V\) của khối nón tương ứng là:
A. \({S_{xq}} = \pi {a^2},V = \dfrac{{\pi {a^3}\sqrt 6 }}{4}\)
B. \({S_{xq}} = \dfrac{{\pi {a^2}}}{2},V = \dfrac{{\pi {a^3}\sqrt 3 }}{{12}}\)
C. \({S_{xq}} = \pi {a^2}\sqrt 2 ,V = \dfrac{{\pi {a^3}\sqrt 6 }}{4}\)
D. \({S_{xq}} = \pi {a^2},V = \dfrac{{\pi {a^3}\sqrt 6 }}{{12}}\)