a) Gọi \(O = AC \cap MD\). Trong mặt phẳng \((SMB) \) gọi \(I = SO \cap MN\).
Ta có: \(I = \left( {SAC} \right) \cap MN\)
b) \(A{\rm{D}}\parallel BC\left( {BC \subset \left( {SBC} \right)} \right)\)
\( \Rightarrow A{\rm{D}}\parallel \left( {SBC} \right)\).
Mặt phẳng \((SAD) \) cắt mặt phẳng \((NBC) \) theo giao tuyến \(NP\parallel A{\rm{D}}\left( {P \in SA} \right)\).
Ta có thiết diện cần tìm là hình thang \(BCNP\).