Ta có
\(P(x) = (3m - 5n + 1)x + (4m - n -10)\) có hai hệ số là \(a=(3m - 5n + 1) \) và \(b=(4m - n -10)\).
Do đó \(P(x) = 0 \Leftrightarrow \left\{\begin{matrix} 3m - 5n +1 = 0 & & \\ 4m - n -10=0& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 3m - 5n = -1 & & \\ 4m - n =10& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3m - 5n = -1 & & \\ 20m - 5n =50& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -17m = -51 & & \\ 4m - n =10& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} m = 3 & & \\ -n = 10 - 4.3& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m = 3 & & \\ n = 2& & \end{matrix}\right.\)
Vậy \(m=3,\ n=2\) thì đa thức \(P(x) =0\).