Bài 2.5 trang 47 SBT hình học 12

Chứng minh rằng trong một khối nón tròn xoay, góc ở đỉnh là góc lớn nhất trong số các góc được tạo nên bởi hai đường sinh của khối nón đó.

Lời giải

Xét hai đường sinh \(SA , SB\) tùy ý của hình nón. Vẽ đường kính \(AC\) của đường tròn đáy.

Ta có góc \(\widehat {ASC}\) là góc ở đỉnh của hình nón. Hai tam giác \(ASC\) và \(ASB\) có hai cặp cạnh bằng nhau vì chúng cùng là đường sinh của hình nón.

Ta có cạnh \(AC \ge AB\) nên \(\widehat {{\rm{AS}}C} \ge \widehat {ASB}\).

Đó là điều cần chứng minh.