a) \(2{x^2}-{\rm{ }}17x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 2, b = -17, c = 1\)
\(\Delta {\rm{ }} = {\rm{ }}{\left( { - 17} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}2{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}289{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}281\)
\(\displaystyle{x_1} + {x_2} = - {{ - 17} \over 2} = {{17} \over 2};{x_1}{x_2} = {1 \over 2}\)
b) \(5{x^2}-{\rm{ }}x{\rm{ }} - {\rm{ }}35{\rm{ }} = {\rm{ }}0\) có \(a = 5, b = -1, c = -35\)
\(\Delta = {\left( { - 1} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}\left( { - 35} \right) = 1 + 700 = 701\)
\(\displaystyle{x_1} + {x_2} = - {{ - 1} \over 5} = {\rm{ }}{1 \over 5};{x_1}{x_2} = {{ - 35} \over 5} = - 7\)
c) \(8{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 8, b = -1, c = 1\)
\(\Delta {\rm{ }} = {\rm{ }}{\left( { - 1} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}8{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}32{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0\)
Phương trình vô nghiệm nên không có hệ thức Viet tổng và tích 2 nghiệm.
d) \(25{x^2} + {\rm{ }}10x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 25, b = 10, c = 1\)
\(\Delta = {\rm{ }}{10^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}25{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}100{\rm{ }} - {\rm{ }}100{\rm{ }} = {\rm{ }}0\)
\(\displaystyle{x_1} + {x_2} = - {{10} \over {25}} = - {2 \over 5};{x_1}{x_2} = {1 \over {25}}\)