Ta có giao điểm của \( (MNP)\) với \(SA, AB, BC\) lần lượt là \(M, N, P\).
Trong \((SAB)\) kéo dài \(MN\) và \(SB\), khi đó gọi \(I=MN\cap SB\)
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}I \in MN,MN \subset (MNP) \Rightarrow I \in (MNP)\\I \in SB\end{array} \right.\\ \Rightarrow I = (MNP) \cap SB\end{array}\)
Trong \((ABCD)\) kéo dài \(NP\) và kéo dài \(CD\), khi đó gọi \(E=NP\cap CD\)
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}E \in NP,NP \subset (MNP) \Rightarrow E \in (MNP)\\E \in CD\end{array} \right.\\ \Rightarrow E = (MNP) \cap CD\end{array}\)
Trong \((MNP)\) hay cũng là \((MIP)\) kéo dài \(IP\), khi đó gọi \(J=IP\cap SC\)
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}J \in IP,IP \subset (MNP) \Rightarrow J \in (MNP)\\J \in SC\end{array} \right.\\ \Rightarrow J = (MNP) \cap SC\end{array}\)
Trong \((SCD)\) kéo dài \(EJ\) gọi \(K=EJ\cap SD\)
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}K \in {\rm{EJ}},{\rm{EJ}} \subset (MNP) \Rightarrow K \in (MNP)\\K \in SD\end{array} \right.\\ \Rightarrow K = (MNP) \cap SD\end{array}\).