Vì \(∆ A’B’C’\) đồng dạng \(∆ ABC\) theo tỉ số \(k\) nên ta có:
\(\displaystyle {{A'B'} \over {AB}} = {{A'C'} \over {AC}} = {{B'C'} \over {BC}} = k\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\displaystyle {{A'B'} \over {AB}} = {{A'C'} \over {AC}} = {{B'C'} \over {BC}} \)\(\,\displaystyle= {{A'B' + A'C' + B'C'} \over {AB + AC + BC}}\)
\( \Rightarrow \displaystyle {{A'B' + A'C' + B'C'} \over {AB + AC + BC}} = k\)
Vậy \(\dfrac{{{C_{A'B'C'}}}}{{{C_{ABC}}}} = k\).
Trong đó: \(C_{A'B'C'}\) là chu vi \(\Delta A'B'C'\).
\(C_{ABC}\) là chu vi \(\Delta ABC\).