Bài 2.50 trang 104 SBT hình học 10

Cho tam giác ABC có \(BC = a,CA = b,AB = c\). Chứng minh rằng \({b^2} - {c^2} = a(b\cos C - c\cos B)\)

Lời giải

Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B\)

\({c^2} = {a^2} + {b^2} - 2ab\cos C\)

\( \Rightarrow {b^2} - {c^2} = {c^2} - {b^2} + 2a(b\cos C - c\cos B)\)

\( \Rightarrow 2({b^2} - {c^2}) = 2a(b\cos C - c\cos B)\)

Hay \({b^2} - {c^2} = a(b\cos C - c\cos B)\)