Bài 26 trang 53 SGK Toán 9 tập 2

Dùng điều kiện \(a + b + c = 0\) hoặc \(a - b + c = 0\) để tính nhẩm nghiệm của mỗi phương trình sau :

a) \(35{x^2}-{\rm{ }}37x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\)

b) \({\rm{ }}7{x^2} + {\rm{ }}500x{\rm{ }} - {\rm{ }}507{\rm{ }} = {\rm{ }}0\)

c) \({x^2} - {\rm{ }}49x{\rm{ }} - {\rm{ }}50{\rm{ }} = {\rm{ }}0\)

d) \(4321{x^2} + {\rm{ }}21x{\rm{ }} - {\rm{ }}4300{\rm{ }} = {\rm{ }}0\).

Lời giải

a) \(35{x^2}-{\rm{ }}37x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\) có \(a = 35, b = -37, c = 2\)

Do đó: \(a + b + c = 35 + (-37) + 2 = 0\)

nên \(\displaystyle {x_1} = 1;{x_2} = {2 \over {35}}\)

b) \(7{x^2} + {\rm{ }}500x{\rm{ }} - {\rm{ }}507{\rm{ }} = {\rm{ }}0\) có \(a=7, b = 500, c=-507\)

Do đó: \(a + b + c = 7 + 500 +(- 507)=0\)

nên \(\displaystyle{x_1} = 1;{x_2} =  - {{507} \over 7}\) 

c) \({x^2} - {\rm{ }}49x{\rm{ }} - {\rm{ }}50{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = -49, c = -50\)   

Do đó \(a - b + c = 1 - (-49) +(- 50) = 0\)

nên \(\displaystyle{x_1} =  - 1;{x_2} =  - {{ - 50} \over 1} = 50\) 

d) \(4321{x^2} + {\rm{ }}21x{\rm{ }} - {\rm{ }}4300{\rm{ }} = {\rm{ }}0\) có \(a = 4321, b = 21, c = -4300\)

Do đó \(a - b + c = 4321 - 21 + (-4300) = 0\) 

nên \(\displaystyle{x_1} =  - 1;{x_2} =  - {{ - 4300} \over {4321}} = {{4300} \over {4321}}\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”