Bài 26 trang 76 SGK Toán 9 tập 2

Cho \(AB, BC, CA \) là ba dây của đường tròn \((O)\). Từ điểm chính giữa \(M\) của \(\overparen{AB}\) vẽ dây \(MN\) song song với dây \(BC\). Gọi giao điểm của \(MN\) và \(AC\) là \(S\). Chứng minh \(SM = SC\) và \(SN = SA\)

Lời giải

Ta có:

+) Chứng minh SM = SC

\(\widehat {{M_1}} = \widehat {{C_2}}\) (2 góc ở vị trí so le trong)

\(\widehat{{{C}_{1}}}=\widehat{{{C}_{2}}}\) (2 góc nội tiếp chắn 2 cung bằng nhau \(\overparen{BM}=\overparen{AM}\) ) 

Nên suy ra \(\widehat{{{M}_{1}}}=\widehat{{{C}_{1}}}\)

Suy ra tam giác SMC là tam giác cân tại S. Vậy \(SM = SC.\)

+) Chứng minh SA = SN

Ta có: \(\widehat {{M_1}} = \widehat {{A_1}}\)( 2 góc nội tiếp cùng chắn cung NC)

\(\widehat {{C_1}} = \widehat {{N_1}}\)(2 góc nội tiếp cùng chắn cung AM)

Mà \(\widehat{{{M}_{1}}}=\widehat{{{C}_{1}}}\) (chứng minh trên)

\(\widehat{{{A}_{1}}}=\widehat{{{N}_{1}}}\) (vì cùng bằng 2 góc bằng nhau)

Vậy tam giác SAN cân tại S. Nên \(SA = SN\) (đpcm)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”