Bài 27 trang 41 SBT toán 7 tập 2

Đề bài

Cho điểm \(M\) nằm trong tam giác \(ABC.\) Chứng minh rằng tổng \(MA + MB + MC\) lớn hơn nửa chu vi tam giác \(ABC.\)

Lời giải

Trong \(∆AMB\) ta có:

\(MA + MB > AB\) (bất đẳng thức tam giác)   (1)

Trong \(∆AMC\) ta có:

\(MA + MC > AC\) (bất đẳng thức tam giác)   (2)

Trong \(∆BMC\) ta có:

\(MB + MC > BC\) (bất đẳng thức tam giác)    (3)

Cộng từng vế của (1), (2) và (3) ta có:

\(2(MA + MB + MC) \)\(> AB + AC + BC\)

Suy ra: \(\displaystyle MA + MB + MC \)\(\displaystyle > {{AB + AC + BC} \over 2}\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”