Bài 27 trang 98 SGK Hình học 10

Cho đường tròn \((C)\) tâm \(F_1\) bán kính \(2a\) và một điểm \(F_2\) ở bên trong của \((C)\). Tập hợp điểm \(M\) của các đường tròn \((C’)\) thay đổi nhưng luôn đi qua \(F_2\) và tiếp xúc với \((C)\) (xem hình) là đường nào sau đây?

A. Đường thẳng                             

B. Đường tròn

C. Elip                                           

D. Parabol

Lời giải

Gọi bán kính của đường tròn \((C’)\) là \(r\)

Ta có: \((C’)\) tiếp xúc trong với đường tròn \((C)\) nên \(F_1M = 2a – r\)

\(F_2 ∈ (C’)\) nên \(F_2M = r\)

Ta có: \(F_1M + F_2M = 2a – r + r = 2a\)

Suy ra: Tập hợp tâm \(M\) của đường tròn \((C’)\) là một elip

Vậy chọn C.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”