Bài 2.9 trang 64 SBT hình học 11

Đề bài

Cho tứ diện \(SABC\) có \(D\), \(E\) lần lượt trung điểm \(AC\), \(BC\) và \(G\) là trọng tâm tam giác \(ABC\). Mặt phẳng \((\alpha)\) qua \(AC\) cắt \(SE\), \(SB\) lần lượt tại \(M\), \(N\). Một mặt phẳng \((\beta)\) qua \(BC\) cắt \(SD\) và \(SA\) lần lượt tại \(P\) và \(Q\).

a) Gọi \(I = AM \cap DN\), \(J = BP \cap EQ\). Chứng minh bốn điểm \(S\), \(I\), \(J\), \(G\) thẳng hàng.

b) Giả sử \(AN \cap DM = K\), \(BQ \cap EP = L\). Chứng minh ba điểm \(S\), \(K\), \(L\) thẳng hàng.

Lời giải

a)

Ta thấy:

+ \(G\) là trọng tâm tam giác \(ABC\) \(\Rightarrow G \in BD \Rightarrow G \in BD\).

+ \(I \in DN\) (theo cách dựng hình).

+ \(J \in BP\) (theo cách dựng hình).

\(\Rightarrow S, I, J, G \in (SPN)\)

Tương tự \( S, I, J, G \in (SQM)\)

Vậy \(S, I, J, G\) là điểm chung của \((SPN)\) và \((SQM)\).

b)

Ta thấy:

+ \(S = PD \in EM\)

+ \(K \in DM\)

+ \(L \in PE\)

\(\Rightarrow S, K, L \in (SPM)\)

Tương tự \(S, K, L \in (SQN)\)

Vậy \(S, K, L\) là điểm chung của \((SPM)\) và \((SQN)\).