Bài 29 trang 79 SGK Toán 9 tập 2

Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến kẻ từ \(A\) đối với đường tròn (O') cắt (O) tại \(C\) đối với đường tròn \((O)\) cắt \((O')\) tại \(D\).

Chứng minh rằng \(\widehat {CBA} = \widehat {DBA}\).

Lời giải

               

Xét đường tròn \( (O')\) có \(\widehat {CAB}\) là góc tạo bởi tiếp tuyến và  dây cung \(AB\)

Nên \(\widehat {CAB} = \dfrac{1}{2}\)sđ \(\overparen{AmB}\) (1)

Và \(\widehat {ADB} = \dfrac{1}{2}\) sđ \(\overparen{AmB}\)  (2) (góc nội tiếp chắn cung \(\overparen{AmB}\)).

Từ (1), (2) suy ra: \(\widehat {CAB} = \widehat {ADB}\)   (*)

Xét đường tròn \((O)\), ta có:

 \(\widehat {BAD}\) là góc tạo bởi một tiếp tuyến và  dây cung \(AB\)

Nên \(\widehat {BAD} = \dfrac{1}{2}\)sđ \(\overparen{AnB}\) (3)

Lại có \(\widehat {ACB} = \dfrac{1}{2}\) sđ \(\overparen{AnB}\)  (4) (góc nội tiếp chắn cung \(\overparen{AnB}\)).

Từ (3), (4) suy ra: \(\widehat {BAD} = \widehat {ACB}\)   (**)

Hai tam giác \(ABD\) và \(CBA\) có \(\widehat {CAB} = \widehat {ADB}\) (theo (*)) và \(\widehat {BAD} = \widehat {ACB}\) (theo (**)) nên  \(\Delta ACB \backsim \Delta DAB\left( {g - g} \right)  \) suy ra \(\widehat {CBA} = \widehat {DBA}\) (hai góc tương ứng) (đpcm).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”