\(\displaystyle {25^x} - {6.5^{x + 1}} + {5^3} = 0\)\(\displaystyle \Leftrightarrow {5^{2x}} - {30.5^x} + 125 = 0\)
Đặt \(\displaystyle t = {5^x} > 0\) ta được \(\displaystyle {t^2} - 30t + 125 = 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}t = 5\\t = 25\end{array} \right.\left( {TM} \right)\)
Suy ra \(\displaystyle \left[ \begin{array}{l}{5^x} = 5\\{5^x} = 25\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).
Chọn A.