Không dùng bảng số và máy tính, chứng minh rằng
a) \(\sin {20^0} + 2\sin {40^0} - \sin {100^0} = \sin {40^0}\)
b) \({{\sin ({{45}^0} + \alpha ) - c{\rm{os(}}{{45}^0} + \alpha )} \over {\sin ({{45}^0} + \alpha ) + c{\rm{os(}}{{45}^0} + \alpha )}} = \tan \alpha \)
c) \({{3{{\cot }^2}{{15}^0} - 1} \over {3 - c{\rm{o}}{{\rm{t}}^2}{{15}^0}}} = - \cot {15^0}\)
d) \(\sin {200^0}\sin {310^0} + c{\rm{os34}}{{\rm{0}}^0}{\rm{cos5}}{{\rm{0}}^0}{\rm{ = }}{{\sqrt 3 } \over 2}\)
Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha ,\beta \)
a) \(\sin 6\alpha \cot 3\alpha - c{\rm{os6}}\alpha \)
b) \({{\rm{[}}\tan ({90^0} - \alpha ) - \cot ({90^0} + \alpha ){\rm{]}}^2} - {{\rm{[}}c{\rm{ot(18}}{{\rm{0}}^0} + \alpha ) + \cot ({270^0} + \alpha ){\rm{]}}^2}\)
c) \((\tan \alpha - \tan \beta )cot(\alpha - \beta ) - \tan \alpha \tan \beta \)
d) \((\cot {\alpha \over 3} - \tan {\alpha \over 3})\tan {{2\alpha } \over 3}\)
Không sử dụng bảng số và máy tính, hãy tính
a) \({\sin ^4}{\pi \over {16}} + {\sin ^4}{{3\pi } \over {16}} + {\sin ^4}{{5\pi } \over {16}} + {\sin ^4}{{7\pi } \over {16}}\)
b) \(\cot 7,{5^0} + \tan 67,{5^0} - \tan 7,{5^0} - \cot 67,{5^0}\)
Rút gọn các biểu thức
a) \({{\sin 2\alpha + \sin \alpha } \over {1 + c{\rm{os2}}\alpha {\rm{ + cos}}\alpha }}\)
b) \({{4{{\sin }^2}\alpha } \over {1 - c{\rm{o}}{{\rm{s}}^2}{\alpha \over 2}}}\)
c) \({{1 + c{\rm{os}}\alpha - \sin \alpha } \over {1 - c{\rm{os}}\alpha - {\rm{sin}}\alpha }}\)
d) \({{1 + \sin \alpha - 2{{\sin }^2}({{45}^0} - {\alpha \over 2})} \over {4c{\rm{os}}{\alpha \over 2}}}\)
Cho hình thang cân ABCD có đáy nhỏ AB = AD. Biết \(\tan \widehat {BDC} = {3 \over 4}\) tính các giá trị lượng giác của \(\widehat {BAD}\)