Bài 11. Chứng minh rằng hình tròn xoay có vô số mặt phẳng đối xứng.
Bài 12. Trong mỗi trường hợp sau, gọi tên hình tròn xoay:
a) Sinh bởi ba cạnh của hình chữ nhật khi quay quanh đường thẳng chứa cạnh thứ tư.
b) Sinh bởi một hình chữ nhật (kể cả điểm trong) khi quay quanh đường thẳng chứa một cạnh.
Bài 15. Mặt phẳng đi qua trục của một hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh \(2R\).
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tính thể tích của khối trụ.
c) Tính thể tích của khối lăng trụ tứ giác đều nội tiếp hình trụ.
Bài 16. Một hình trụ có bán kính đáy bằng \(R\) và chiều cao \(R\sqrt 3 \).
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tình thể tích của khối trụ giới hạn bởi hình trụ.
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.