Đề bài
Có thể có tam giác nào mà độ dài ba cạnh như sau không:
a) \(5cm; 10cm; 12cm?\)
b) \(1m; 2m; 3,3m?\)
c) \(1,2m; 1m; 2,2m?\)
Đề bài
Cho hình 5. Chứng minh rằng \(MA + MB < IA + IB < CA + CB\)
Đề bài
Cho tam giác \(ABC\) trong đó \(BC\) là cạnh lớn nhất.
a) Vì sao các góc \(B\) và \(C\) không thể là góc vuông hoặc góc tù?
b) Gọi \(AH\) là đường vuông góc kẻ từ \(A\) đến \(BC.\) So sánh \(AB + AC\) với \(BH + CH\) rồi chứng minh rằng \(AB + AC > BC.\)
Đề bài
Cho hai điểm \(A\) và \(B\) nằm về hai phía của đường thẳng \(d. \) Tìm điểm \(C\) thuộc đường thẳng \(d\) sao cho tổng \(AC + CB\) là nhỏ nhất.
Đề bài
Ba thành phố \(A, B C\) trên bản đồ là ba đỉnh của một tam giác, trong đó \(AC = 30km, AB = 70km\)
a) Nếu đặt ở \(C\) máy phát sóng truyền thanh có bán kính hoạt động bằng \(40km\) thì thành phố \(B\) có nhận được tín hiệu không? Vì sao?
b) Cũng hỏi như trên với máy phát sóng có bán kính hoạt động bằng \(100km.\)
Đề bài
Cho tam giác \(ABC,\) điểm \(D \) nằm giữa \(B\) và \(C.\)
Chứng minh rằng \(AD\) nhỏ hơn nửa chu vi tam giác \(ABC.\)
Đề bài
Cho điểm \(M\) nằm trong tam giác \(ABC.\) Chứng minh rằng tổng \(MA + MB + MC\) lớn hơn nửa chu vi tam giác \(ABC.\)
Đề bài
Tính chu vi của một tam giác cân biết độ dài hai cạnh của nó bằng \(3dm\) và \(5dm.\)
Đề bài
Cho tam giác \(ABC.\) Gọi \(M\) là trung điểm của \(BC.\)
Chứng minh rằng \(\displaystyle AM < {{AB + AC} \over 2}\)
Bài 3.1
Bộ ba nào sau đây không thể là số đo ba cạnh của một tam giác?
(A) \(1cm, 2m, 2,5cm\)
(B) \(3cm; 4cm ; 6cm;\)
(C) \(6cm, 7cm, 13cm \)
(D) \(6cm, 7cm, 12cm\)
Bài 3.5
Chứng minh rằng trong một đường tròn, đường kính là dây lớn nhất.