a) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB;\,\,SA \bot AD\)\( \Rightarrow \Delta SAB,\,\,\Delta SAD\) là các tam giác vuông tại \(A\).
Ta có:
\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB \Rightarrow \Delta SBC\) vuông tại \(B\).
Tương tự:
\(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\)\( \Rightarrow \Delta SCD\) vuông tại \(D\).
b) Ta có \(BC \bot \left( {SAB} \right)\,\,\left( {cmt} \right) \Rightarrow AB' \bot BC.\)
Mà \(AB' \subset \left( \alpha \right) \Rightarrow AB' \bot SC \Rightarrow AB' \bot \left( {SBC} \right) \)\(\Rightarrow AB' \bot SB\).
Chứng minh tương tự ta có \(AD' \bot \left( {SCD} \right) \Rightarrow AD' \bot SD\).
Dễ thấy \(\Delta SAD = \Delta SAB\left( {c.g.c} \right)\) \( \Rightarrow AB' = AD'\) (hai đường cao cùng xuất phát từ một đỉnh)
\( \Rightarrow \Delta SAD' = \Delta SAB'\) \( \Rightarrow SD' = SB'\) (cạnh tương ứng)
Mà \(SD = SB\) (do \(\Delta SAD = \Delta SAB\)) nên \(\dfrac{{SD'}}{{SD}} = \dfrac{{SB'}}{{SB}} \Rightarrow B'D'//BD\)