a) Đặt \(t = z^2\) , ta được phương trình \({t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = - 3\end{array} \right.\)
Khi \(t = 2 \Rightarrow {z^2} = 2 \Rightarrow z _{1,2}= \pm \sqrt 2 \)
Khi \(t = - 3 \Rightarrow {z^2} = - 3 \Rightarrow z _{3,4}= \pm i\sqrt 3 \)
Vậy phương trình có bốn nghiệm là: \(± \sqrt2\) và \(± i\sqrt3\).
b) Đặt \(t = z^2\) , ta được phương trình \({t^2} + 7t + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 2\\t = - 5\end{array} \right.\)
Khi \(t = -2 \Rightarrow {z^2} =- 2 \Rightarrow z_{1,2} = \pm i\sqrt 2 \)
Khi \(t = - 5 \Rightarrow {z^2} = - 5 \Rightarrow z_{3,4} = \pm i\sqrt 5 \)
Vậy phương trình có bốn nghiệm là: \(± i\sqrt2\) và \(± i\sqrt5\).