Bài 3 trang 184 SBT toán 8 tập 2

Đề bài

Cho góc \(xOy\) khác góc bẹt. Trên tia \(Ox\) lấy hai điểm \(A\) và \(B\) (\(A\) nằm giữa \(O\) và \(B\)), trên tia \(Oy\) lấy hai điểm \(C\) và \(D\) (\(C\) nằm giữa \(O\) và \(D\)). Gọi \( M, N, P, Q\) theo thứ tự là trung điểm của \(AC, BC, BD\), và \(AD.\)

Tìm điều kiện của góc \(xOy\) và các đoạn thẳng \(AB, CD\) để tứ giác \(MNPQ\) là:

a) Hình chữ nhật;

b) Hình thoi;

c) Hình vuông.

Lời giải

a) \(NP\) là đường trung bình của \(\Delta BCD\) nên \(NP//CD;NP = \dfrac{1}{2}CD\).

\(MQ\) là đường trung bình của \(\Delta ACD\) nên \(MQ//CD;MQ= \dfrac{1}{2}CD\).

Do đó tứ giác \(MNPQ\) có \(NP//MQ\) (cùng song song với \(CD\); \(NP=MQ= \dfrac{1}{2}CD\) nên \(MNPQ\) là hình bình hành.

\(MN\) là đường trung bình của \(\Delta ABC\) nên \(MN//AB;MN = \dfrac{1}{2}AB\).

\( MNPQ\) là hình bình hành có một góc vuông là hình chữ nhật nên để \(MNPQ\) là hình chữ nhật thì \(MN\bot \;MQ\) hay \(Ox\bot\,Oy\).

Vậy \(\widehat {xOy} = {90^o}\) thì \(MNPQ\) là hình chữ nhật.

b) \( MNPQ\) là hình bình hành có hai cạnh kề bằng nhau là hình thoi nên để \(MNPQ\) là hình thoi thì \(MN=MQ\) hay \(AB=CD\).

Vậy \(MNPQ\) là hình thoi \(⇔ AB = CD.\)

c) \(MNPQ\) là hình vuông khi nó vừa là hình chữ nhật vừa là hình thoi.

Vậy \(MNPQ\) là hình vuông \(⇔ \widehat {xOy} = {90^o}\) và \(AB = CD.\)