Bài 3 trang 25 SGK Hình học 12

Cho hình hộp \(ABCD.A’B’C’D’\). Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện \(ACB’D’\).

Lời giải

Gọi \(S\) là diện tích đáy \(ABCD\) và \(h\) là chiều cao của khối hộp thì thể tích của khối hộp: \( \Rightarrow V = S.h\)

Chia khối hộp thành khối tứ diện \(ACB’D’\) và bốn khối chóp \(A.A’B’D’, C.C’B’D’, B’.BAC\) và \(D’. DAC\).

Xét khối chóp \(A.A'B'D'\) có diện tích đáy \({S_{A'B'D'}} = \dfrac{S}{2}\) và chiều cao bằng \(h\). Do đó \({V_{A.A'B'D'}} = \dfrac{1}{3}.\dfrac{S}{2}.h = \dfrac{{S.h}}{6}\).

Tương tự như vậy ta chứng minh được: \({V_{A.A'B'D'}} = {V_{C.C'B'D'}} = {V_{B'BAC}} = {V_{D'.DAC}} = \dfrac{{S.h}}{6}\)

Vậy \({V_{ACB'D'}} = V - \left( {{V_{A.A'B'D'}} + {V_{C.C'B'D'}} + {V_{B'BAC}} + {V_{D'.DAC}}} \right)\)

\(= S.h - 4.\dfrac{{S.h}}{6} = \dfrac{{S.h}}{3}\).

\( \Rightarrow \dfrac{V}{{{V_{ACB'D'}}}} = \dfrac{{S.h}}{{\dfrac{1}{3}S.h}} = 3\)


Bài Tập và lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 – Đại số 7

Đề bài

Bài 1: Cho \(f(x) = 9 - {x^5} + 4{\rm{x}} - 2{{\rm{x}}^3} + {x^2} - 7{{\rm{x}}^4};\)

        \(g(x) = {x^5} - 9 + 2{{\rm{x}}^2} + 7{{\rm{x}}^4} + 2{{\rm{x}}^3} - 3{\rm{x}}\).

a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.

b) Tính tổng \(h(x) = f(x) + g(x)\).

c) Tìm nghiệm của đa thức h(x).

Bài 2: Cho \(A(x) = 6{{\rm{x}}^3} + 5{{\rm{x}}^2};B(x) = {x^3} - {x^2};\)\(\;C(x) =  - 2{{\rm{x}}^3} + 4{{\rm{x}}^2}.\)

a) Tìm \(D(x) = A(x) + B(x) - C(x)\).

b) Tìm nghiệm của đa thức D(x).

Bài 3: Tìm m để \(x =  - 1\) là nghiệm của đa thức \(M(x) = {x^2} - m{\rm{x}} + 2\).

Bài 4: Cho đa thức \(K(x) = a + b(x - 1) + c(x - 1)(x - 2)\) Tìm a, b, c biết \(K(1) = 1;K(2) = 3;K(0) = 5.\) 

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 4 – Đại số 7

Đề bài

Bài 1: Cho các đa thức:

\(f(x) = {x^3} - 2{{\rm{x}}^2} + 3{\rm{x}} + 1;g(x) = {x^3} + x - 1;h(x) = 2{{\rm{x}}^2} - 1.\)

a) Tính \(f(x) - g(x) + h(x).\)

b) Tìm x sao cho \(f(x) - g(x) + h(x) = 0.\)

Bài 2: Thu gọn và tính giá trị biểu thức: \(({4^2} - 2{\rm{x}} + 1) - ({x^2} - 4{\rm{x}} - 3),\) tại \(x =  - 2.\)

Bài 3: Cho đa thức \(E(x) = {x^2} + p{\rm{x}} + q.\) Tìm p, q biết \(x = 0\) và \(x =  - 1\) là hai nghiệm của \(E(x).\)  

Bài 4: Thu gọn biểu thức:

a) \(P = (5{\rm{x}} - 2) - (3{\rm{x}} - 3y);\)

b) \(Q = (8{{\rm{a}}^2} - 7{\rm{a}}b - {b^2}) + ( - 6{{\rm{a}}^2} + ab - 2{b^2}) - ( - {a^2} + 8{\rm{a}}b + 4{b^2}).\)

Bài 5: a) Tìm nghiệm của đa thức \(2{{\rm{x}}^2} + 3{\rm{x}} = 0\).

b) Cho \(A(x) = 2{{\rm{x}}^2} - 2{\rm{x}} - 24;\) \(B(x) = 2{{\rm{x}}^2} + 3{\rm{x}} - 29.\) Tìm x sao cho \(A(x) = B(x).\) 

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 4 – Đại số 7

Đề bài

Bài 1: Cho hai đa thức: \(A = 7{{\rm{a}}^2} - 4{\rm{a}}b - {b^2};B = 2{{\rm{a}}^2} - ab + {b^2}.\)

a) Tính \(A + B\).

b)  Tính \(A - B\).

Bài 2: Tìm nghiệm của đa thức:

a) \(5{\rm{x}} + 3(3{\rm{x}} + 7) - 35.\)

b) \({x^2} + 8{\rm{x}} - ({x^2} + 7{\rm{x}} + 8) - 9.\)  

Bài 3: Tìm m để \(x =  - 1\) là nghiệm của đa thức \(P(x) = {x^2} + 2{\rm{x}} + m - 1\).

Bài 4: Tìm đa thức M, biết: \(2({x^2} - 2{\rm{x}}y) - M = 6{{\rm{x}}^2} + 5{\rm{x}}y - {y^2}.\)

Bài 5: Cho hai đa thức: \(f(x) = {x^3} + 4{{\rm{x}}^2} - 3{\rm{x}} + 2;\)\(\;g(x) = {x^2}(x + 4) + x - 5.\) Tìm x sao cho \(f(x) = g(x).\) 

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 4 – Đại số 7

Đề bài

Bài 1: Cho hai đa thức: \(P =  - 2{{\rm{x}}^3} + x{y^2} + 3{\rm{x}};Q = 3{{\rm{x}}^3} - x{y^2} + 4{\rm{x}}.\)

a) Tính \(P + Q\).

b)  Tính \(P - Q\).

Bài 2: Cho hai đa thức: \(f(x) = {x^3} + {x^2} + x + 1;\)\(\;g(x) = {x^3} - 2{x^2} + x + 4\).

a) Chứng tỏ \(x =  - 1\) là nghiệm của f(x) và g(x).

b) Tính \(f(x) - g(x)\) và tìm giá trị của \(f(x) - g(x)\) tại \(x =  - {1 \over 2}.\)   

Bài 3: Tìm m để đa thức \(K(x) = m{{\rm{x}}^2} - 2{\rm{x}} + 4\) có một nghiệm là \(x =  - 2.\)

Bài 4: Tìm nghiệm của đa thức  \(M(x) = 2{{\rm{x}}^4} - 4{{\rm{x}}^3}\).

Bài 5: Cho \(A(x) = m + n{\rm{x}} + p{\rm{x}}(x - 1),\) biết \(A(0) = 5;A(1) =  - 2;A(2) = 7.\) Tìm đa thức A(x).

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 4 – Đại số 7

Đề bài

Bài 1: Cho \(A = 2{{\rm{a}}^2} + ab - {b^2} - ( - {a^2} + {b^2} - ab);\)

                 \(B = 3{{\rm{a}}^2} + {b^2} - (ab - {a^2})\).

a) Tính \(A + B\).

b) Tính \(A - B\).  

Bài 2: Cho:

  \(\eqalign{  & f(x) = {x^2}(2{x^3} - 3{x^2} + 5) - 6;  \cr  & g(x) = 3{x^5} - 2{x^4} + 3({x^3} + 1);  \cr  & h(x) = {x^5} + 2{x^3} - 7x + 4 \cr} \)

Tính \(f(x) + g(x) - h(x)\) và tính giá trị của  \(f(x) + g(x) - h(x)\) tại \(x =  - 1\).

Bài 3: Cho đa thức \(M(x) = {x^2} - 2m{\rm{x}} + m - 2\).

a) Tìm m biết \(M(1) =  - 3;\) 

b) Tìm nghiệm của M(x) với m vừa tìm được ở câu a)

Bài 4: Cho đa thức \(K(x) = {x^2} - 3{\rm{x}} + 2\) và \(L(x) = {x^2} + p{\rm{x}} + q + 1\).

Tìm p, q sao cho \(K(x) = L(x)\), với mọi giá trị của x.

Bài 5: Tìm nghiệm của đa thức \(M(x) =  - 3{{\rm{x}}^2} + 6{\rm{x}} - 4 - ( - 2{{\rm{x}}^2} + 5{\rm{x}} - 4)\).

Xem lời giải

Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 4 – Đại số 7

Đề bài

Bài 1: Thu gọn hệ số và bậc của đơn thức:

a) \( - 2{1 \over 5}x{y^3}\left( {{{ - 25} \over {11}}{x^3}{y^2}} \right)\);

b) \({\left( { - {4 \over 5}{x^2}{y^5}} \right)^2}{\left( {{5 \over 2}{x^4}y} \right)^3}.\)

Bài 2: Cho đa thức: \(A(x) = 2{x^2} - 5x + 5;\)\(\;B(x) = 2{x^2} - 3x - 5\).

a) Tính \(A(x) - B(x)\).

b) Tính \(B( - 1)\). 

Bài 3: Cho đa thức \(A(x) = m{{\rm{x}}^2} + 2m{\rm{x}} - 3\). Tìm m để A(x) có nghiệm \(x =  - 1\).

Bài 4: Tìm nghiệm của các đa thức sau:

a) \(9{{\rm{x}}^2} - 1\).

b) \(8{{\rm{x}}^3} - 2{\rm{x}}\).

c) \((2{\rm{x}} + 3).(5 - x)\).    

Xem lời giải