a) Hai mặt phẳng \((ABF)\) và \((CDE)\) chia khối tứ diện \(ABCD\) thành bốn khối tứ diện \(ADEF, ACEF, BDEF, BCEF\)
b) Vì \(F\) là trung điểm của \(CD\) nên mp \((ABF)\) chia khối tứ diện \(ABCD\) thành hai khối tứ diện \(ABCF\) và \(ABDF\) có thể tích bằng nhau.
Vì \(E\) là trung điểm của \(AB\) nên mp \((CDE)\) lại chia mỗi khối tứ diện \(ABCF\) và \(ABDF\) thành hai khối tứ diện có thể tích bằng nhau.
Vậy \({V_{ADEF}} = {V_{ACEF}} = {V_{BDEF}} = {V_{BCEF}}\)
c) Nếu \(ABCD\) là tứ diện đều thì nó nhận mp \((ABF)\) và mp \((CDE)\) làm các mặt phẳng đối xứng và phép đối xứng qua đường thẳng \(EF\) biến tứ diện \(ADEF\) thành tứ diện \(BCEF\). Từ đó suy ra:
Khối tứ diện \(ADEF\) bằng khối tứ diện \(ACEF\) (vì chúng đối xứng với nhau qua mp \((ABF)\))
Khối tứ diện \(ADEF\) bằng khối tứ diện \(BDEF\) (vì chúng đối xứng với nhau qua mp \((CDE)\))
Khối tứ diện \(ADEF\) bằng khối tứ diện \(BCEF\) (vì phép đối xứng qua trục \(EF\) biến tứ diện này thành tứ diện kia)