Tâm \(I\) của mặt cầu đi qua \(A,B,C,S\) là giao của trục đường tròn ngoại tiếp tam giác \(ABC\) và mặt phẳng trung trực của \(SA\)
Tam giác \(ABC\) vuông tại \(A\) nên trục đường tròn \(Mx\) với \(M\) là trung điểm của \(BC\).
Bán kính mặt cầu \(R=IA\)
\(MI={1 \over 2} SA = {a\over 2}\), \(AM={1\over 2} BC={1\over 2} \sqrt{b^2+c^2}\)
Xét tam giác vuông \(IAM\) có: \(R = IA = \sqrt {I{M^2} + A{M^2}} = \sqrt {\frac{{{a^2}}}{4} + \frac{{{b^2} + {c^2}}}{4}} = \frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}} \)
Chọn (C).