a) Trong \((ABN)\): Gọi \(A'=AG \cap BN\)
\( \Rightarrow A' \in BN\), \(BN \subset (BCD)\).
\( \Rightarrow A' \in (BCD) \Rightarrow A' = AG \cap (BCD)\)
b) Ta có: \(\left\{ \begin{array}{l}MM'//AA'\\AA' \subset \left( {ABN} \right)\\M \in AB \subset \left( {ABN} \right)\end{array} \right. \) \(\Rightarrow MM' \subset \left( {ABN} \right)\)
Suy ra \(\left\{ \begin{array}{l}M' \in \left( {ABN} \right)\\M' \in \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow M' \in AN = \left( {ABN} \right) \cap \left( {BCD} \right)\) hay \(M',A',B\) thẳng hàng.
*) Xét tam giác \(NMM'\) có:
+) \(G\) là trung điểm của \(NM\).
+) \(GA'//MM'\)
\(\Rightarrow A'\) là trung điểm của \(NM'\)
Xét tam giác \(BAA'\) có:
+) \(M \) là trung điểm của \(AB\)
+) \(MM'//AA'\)
\(\Rightarrow M'\) là trung điểm của \(BA'\)
Do đó: \(BM'=M'A'=A'N\).
c) Ta có \(\displaystyle GA'={1\over 2} MM'\), \(\displaystyle MM'={1\over 2} AA'\).
\(GA = \dfrac{3}{4}AA' \Rightarrow \dfrac{{GA'}}{{GA}} = \dfrac{{\dfrac{1}{4}AA'}}{{\dfrac{3}{4}AA'}} = \dfrac{1}{3} \) \(\Rightarrow GA = 3GA'\)