Bài 3 trang 61 SGK Giải tích 12

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số:

a) \(y=x^{4\over3}\) ;                       b) \(y=x^{-3}\).

Lời giải

a) Hàm số \(y=x^{4\over3}\)

*) Tập xác định: \(D=(0;+\infty )\).

+) Sự biến thiên:

Ta có: \(y' = \displaystyle{4 \over 3}{x^{{1 \over 3}}}>0,\forall x>0 \)

- Hàm số đồng biến trên khoảng \((0;+\infty)\)

- Giới hạn đặc biệt: \(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \).

- Đồ thị hàm số không có tiệm cận.

- Bảng biến thiên

*) Đồ thị: Đồ thị hàm số qua \((1;1)\), \((2;\root 3 \of {{2^4}} )\).

b) Hàm số \(y = {x^{ - 3}}\)

*) Tập xác định: \(D=\mathbb ℝ \backslash {\rm{\{ }}0\} \).

*) Sự biến thiên:

Ta có: \(y' =  - 3{x^{ - 4}} < 0,\forall x \in D\)

- Hàm nghịch biến trong khoảng \((-∞;0)\) và \((0; +∞)\).

- Giới hạn đặc biệt:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} y = + \infty \cr
& \mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \cr
& \mathop {\lim }\limits_{x \to \pm \infty } y = 0 \cr }\)

- Đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

- Bảng biến thiên

*) Đồ thị:

Đồ thị qua \((-1;-1)\), \((1;1)\), \(\left( {2;{1 \over 8}} \right)\), \(\left( {-2;{-1 \over 8}} \right)\). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọa độ.


Bài Tập và lời giải

Giải bài 1 trang 88 SBT Sinh học 8
Hãy trình bày các chức năng của da.

Xem lời giải

Giải bài 2 trang 88 SBT Sinh học 8
Chức năng nào của da là quan trọng nhất ? Vì sao ?

Xem lời giải

Giải bài 3 trang 88 SBT Sinh học 8
Chức năng che chở và bảo vệ của da do bộ phận nào đảm nhiệm ?

Xem lời giải