a) Ta có: \(AB = AD\) (giả thiết) \( \Rightarrow A\) thuộc đường trung trực của \(BD\) (Theo tính chất một điểm cách đều hai đầu của đoạn thẳng thì thuộc đường trung trực của đoạn thẳng đó).
\(CB = CD\) (giả thiết) \( \Rightarrow C\) thuộc đường trung trực của \(BD\) (Theo tính chất một điểm cách đều hai đầu của đoạn thẳng thì thuộc đường trung trực của đoạn thẳng đó).
Vậy \(AC\) là đường trung trực của \(BD.\)
b) Xét \(∆ ABC\) và \(∆ADC\) có:
+) \(AB = AD\) (giả thiết)
+) \(BC = DC\) (giả thiết)
+) \(AC\) cạnh chung
Suy ra \(∆ ABC = ∆ADC\) (c.c.c)
\(\Rightarrow \widehat B = \widehat D\) (hai góc tương ứng)
Ta có: \(\widehat B + \widehat {BC{\rm{D}}} + \widehat {\rm{D}} + \widehat {BA{\rm{D}}} = {360^0}\) (Định lí tổng các góc của một tứ giác).
\(\begin{array}{l}
\widehat B + \widehat {\rm{D}} = {360^0} - \left( {\widehat {BC{\rm{D}}} + \widehat {BA{\rm{D}}}} \right) \\\;\;\;\;\;\;\;\;\;\;\;= {360^0} - \left( {{{60}^0} + {{100}^0}} \right) = {200^0}\\ \text{Mà }\widehat B= \widehat D\text{ (chứng minh trên) }\\
\Rightarrow \widehat B+\widehat B = {200^0}\\\Rightarrow 2\widehat B = 200^0
\end{array}\)
Do đó \(\widehat B = \widehat {\rm{D}} = {200^0}:2 = {100^0}.\)