Bài 3 trang 99 SGK Hình học 12

Cho mặt cầu \((S)\) tâm \(O\) bán kính \(r\). Hình nón có đường tròn đáy \((C)\) và đỉnh \(I\) đều thuộc \((S)\) được gọi là hình nón nội tiếp mặt cầu \((S)\). Gọi \(h\) là chiều cao của hình nón đó.

a) Tính thể tích của hình nón theo \(r\) và \(h\).

b) Xác định \(h\) để thể tích của hình nón là lớn nhất.

Lời giải

a) Cắt hình vẽ bằng một mặt phẳng qua trục hình nón, ta có hình vẽ trên, trong đó \(AH\) là bán kính đáy hình nón, \(SH\) là chiều cao hình nón \(SH = h\), \(SS'\) là đường kính hình cầu \(SS' = 2r\).

Tam giác \(SAS'\) vuông tại đỉnh \(A\), và \(AH\) là đường cao nên:

\(AH^2= SH.S'H\) \( \Rightarrow AH^2 = h(2r - h)\)

\(V\)nón = \({1 \over 3}\pi .A{H^2}.SH \Rightarrow V\)nón = \({1 \over 3}\pi {h^2}(2r - h)\)

b) Ta có:

\(V\)nón max \( \Leftrightarrow \) \(2V\)nón = \({\pi  \over 3}.{h^2}(4r - 2h)\) lớn nhất.

Ta có \(h^2(4r - 2h) = h.h.(4r - 2h)\)\( \le {\left( {{{h + h + 4r - 2h} \over 3}} \right)^3} = {\left( {{{4r} \over 3}} \right)^3}\)

Dấu bằng xảy ra thì \(V\)nón lớn nhất.

Khi đó \(h = 4r - 2h\) \( \Rightarrow h = {4 \over 3}r\) 

và \(V\)nón max = \({\pi  \over 6}{\left( {{{4r} \over 3}} \right)^3} = {{32} \over {81}}\pi {r^3}\)


Bài Tập và lời giải

Bài 38 trang 25 SBT toán 7 tập 2

Đề bài

Tính \(f(x) + g(x)\) với:

\(f\left( x \right) = {x^5} - 3{{\rm{x}}^2} + {x^3} - {x^2} - 2{\rm{x}} + 5\)

\(g\left( x \right) = {x^2} - 3{\rm{x}} + 1 + {x^2} - {x^4} + {x^5}\) 

Xem lời giải

Bài 39 trang 25 SBT toán 7 tập 2

Đề bài

Tính \(f(x) – g(x)\) với:

\(f(x) = {x^7} - 3{{\rm{x}}^2} - {x^5} + {x^4}\)\( - {x^2} + 2{\rm{x}} - 7\)

\(g(x) = x - 2{{\rm{x}}^2} + {x^4} - {x^5}\)\( - {x^7} - 4{{\rm{x}}^2} - 1\) 

Xem lời giải

Bài 40 trang 25 SBT toán 7 tập 2

Đề bài

Cho các đa thức:     

\(f(x) = {x^4} - 3{{\rm{x}}^2} + x - 1\)

\(g(x) = {x^4} - {x^3} + {x^2} + 5\)

Tìm đa thức \(h(x)\) sao cho: 

a) \(f(x) + h(x) = g(x)\)

b) \(f(x) - h(x) = g(x)\)

Xem lời giải

Bài 42 trang 26 SBT toán 7 tập 2

Đề bài

Tính \(f (x) + g (x) - h (x)\) biết:

\(f(x) = {x^5} - 4{{\rm{x}}^3} + {x^2} - 2{\rm{x}} + 1\)

\(g(x) = {x^5} - 2{{\rm{x}}^4} + {x^2} - 5{\rm{x}} + 3\)

\(h(x) = {x^4} - 3{{\rm{x}}^2} + 2{\rm{x}} - 5\)

Xem lời giải

Bài 8.1, 8.2 phần bài tập bổ sung trang 26 SBT toán 7 tập 2

Bài 8.1

Cho 

\(f(x) = {x^2} + 2{{\rm{x}}^3} - 7{{\rm{x}}^5} - 9 - 6{{\rm{x}}^7} \)\(+ {x^3} + {x^2} + {x^5} - 4{{\rm{x}}^2} + 3{{\rm{x}}^7}\)

\(g(x) = {x^5} + 2{{\rm{x}}^3} - 5{{\rm{x}}^8} - {x^7} + {x^3} + 4{{\rm{x}}^2} \)\(- 5{{\rm{x}}^7} + {x^4} - 4{{\rm{x}}^2} - {x^6} - 12\)

\(h(x) = x + 4{{\rm{x}}^5} - 5{{\rm{x}}^6} - {x^7} + 4{{\rm{x}}^3} + {x^2} \)\(- 2{{\rm{x}}^7} + {x^6} - 4{{\rm{x}}^2} - 7{{\rm{x}}^7} + x\)

a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa tăng của biến. 

b) Tính \(f (x) + g (x) – h (x)\)


Xem lời giải