a) \( \dfrac{3}{2x+6}-\dfrac{x-6}{2x^{2}+6x}\) \( =\dfrac{3}{2(x+3)}+\dfrac{-(x-6)}{2x(x+3)}\)
\(=\dfrac{{3x}}{{2x(x + 3)}}+\dfrac{-(x-6)}{2x(x+3)}\)
\( =\dfrac{3x-(x-6)}{2x(x+3)}=\dfrac{3x-x+6}{2x(x+3)}\)
\(=\dfrac{2x+6}{2x(x+3)}=\dfrac{{2(x + 3)}}{{2x(x + 3)}}=\dfrac{1}{x}\)
b) \( x^{2}+1-\dfrac{x^{4}-3x^{2}+2}{x^{2}-1}\)
\( =x^{2}+1+\dfrac{-(x^{4}-3x^{2}+2)}{x^{2}-1}\)
\( = \dfrac{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} + \dfrac{{ - {x^4} + 3{x^2} - 2}}{{{x^2} - 1}}\)
\( =\dfrac{(x^{2}+1)(x^{2}-1)-x^{4}+3x^{2}-2}{x^{2}-1}\)
\( =\dfrac{x^{4}-1-x^{4}+3x^{2}-2}{x^{2}-1}\)
\( =\dfrac{3x^{2}-3}{x^{2}-1}=\dfrac{3(x^{2}-1)}{x^{2}-1}=3\).