Bài 30 trang 9 SBT toán 9 tập 1

Đề bài

Cho các biểu thức: 

\(A = \sqrt {x + 2} .\sqrt {x - 3} \) và \(B = \sqrt {(x + 2)(x - 3)} .\)

a) Tìm \(x\) để \(A\) có nghĩa. Tìm \(x\) của \(B\) có nghĩa.

b) Với giá trị nào của \(x\) thì \(A = B\) ? 

Lời giải

a) Ta có: \(A = \sqrt {x + 2} .\sqrt {x - 3} \) có nghĩa khi và chỉ khi: 

\(\left\{ \matrix{
x + 2 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

Vậy  \(x \ge 3\) thì \(A\) có nghĩa.

\(B = \sqrt {(x + 2)(x - 3)} \) có nghĩa khi và chỉ khi:

\((x + 2)(x - 3) \ge 0\)

Trường hợp 1: 

\(\left\{ \matrix{
x + 2 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

Trường hợp 2: 

\(\left\{ \matrix{
x + 2 \le 0 \hfill \cr 
x - 3 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr 
x \le 3 \hfill \cr} \right. \Leftrightarrow x \le - 2\)

Vậy với \(x ≥ 3\) hoặc \(x ≤ -2\) thì \(B\) có nghĩa

b) Để \(A\) và \(B\) đồng thời có nghĩa thì \(x ≥ 3\)

Vậy với \(x ≥ 3\) thì \(A = B\).