Ta có: \(\widehat {BAM} = \widehat {MAC}\) (vì \(AM\) là tia phân giác của \(\widehat {BAC}\))
\( \Rightarrow \overparen{BM} =\) \(\overparen{CM}\) \( (1)\)
Ta có: \(\widehat {DAM} = \displaystyle{1 \over 2}sđ \overparen{ACM}\) (góc giữa tia tiếp tuyến và dây cung)
Hay \(\widehat {DAM} = \displaystyle{1 \over 2} (sđ \overparen{AC} + sđ \overparen{CM}\) )\((2)\)
Gọi \(N\) là giao điểm của \(AM\) và \(BC.\)
Ta có: \(\widehat {ANC}\) là góc có đỉnh ở trong đường tròn \((O).\)
\( \Rightarrow \) \(\widehat {ANC} = \displaystyle{1 \over 2} (sđ \overparen{AC} + sđ \overparen{BM})\)\((3)\)
Từ \((1),\) \((2)\) và \((3)\) suy ra: \(\widehat {DAM} = \widehat {ANC}\) hay \(\widehat {DAN} = \widehat {AND}\)
Suy ra: \(∆DAN\) cân tại \(D\) có \(DI\) là tia phân giác nên suy ra \(DI\) là đường cao
\( \Rightarrow \) \(DI \bot AN\) hay \(DI \bot AM\)