a) Tam giác \(ABC\) ngoại tiếp đường tròn tâm \(O\) nên \(AB,\ BC,\ AC\) lần lượt là tiếp tuyến tại \(D,\ E,\ F\) của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
\(AD=AF;\ DB=BE;\ FC=CE.\)
Xét vế phải:
\(VP=AB+AC-BC\)
\(=(AD+DB)+(AF+FC)-(BE+EC)\)
Thay \(DB=BE,\ FC=CE\) vào biểu thức trên, ta được:
\(VP=(AD+BE)+(AF+CE)-(BE+EC)\)
\(=AD+BE+AF+CE-BE-EC\)
\(=AD+AF+(BE-BE)+(CE-EC)\)
\(= AD+AF=2AD=VT.\) (Do \(AD=AF)\)
Vậy \(2AD=AB+AC-BC.\)
b) Các hệ thức tương tự là:
\(2BD=BA+BC-AC;\)
\(2CF=CA+CB-AB.\)
Nhận xét.
Đặt \(p=\dfrac{AB+AC+BC}{2}\) là nửa chu vi của tam giác \(ABC\), \(AB=c;\ BC=a;\ CA=b\).
Ta có: \(2AD=AB+AC-BC\)
\(=(AB+AC+BC)-2BC\)
\(\Leftrightarrow AD=\dfrac{AB+AC+BC}{2}-\dfrac{2BC}{2}\)
\(\Leftrightarrow AD=p-BC\) hay \(AD=p-a\).
Tương tự ta có các kết quả sau:
\(AD=AF=p-a;\)
\(BD=BE=p-b;\)
\(CE=CF=p-c.\)