Diện tích hình vuông \(ABCD\) bằng \( 6.6=36\) (\(c{m^2}\))
Diện tích tam giác \(DKN\) bằng diện tích tam giác \(EBH\) và bằng:
\(\dfrac{1}{2}.4.4 = 8\) (\(c{m^2}\))
Diện tích phần còn lại là : \(36 – ( 8 + 8) = 20\) (\(c{m^2}\))
Trong tam giác vuông \(AEN\) ta có:
\(E{N^2} = A{N^2} + A{E^2}\) \(= 4 + 4 = 8\)
\(EN =\) \(2\sqrt 2 \) \((cm)\)
Trong tam giác vuông \(BHE\) ta có:
\(E{H^2} = B{E^2} + B{H^2}\) \(= 16 + 16 = 32\)
\(EH =\) \(4\sqrt 2 \) \((cm)\)
Diện tích hình chữ nhật \(ENKH\) bằng \(2\sqrt 2\, .\) \(4\sqrt 2 \) \(=16\) (\(c{m^2}\))
Nối đường chéo \(BD.\) Théo tính chất đường thẳng song song cách đều ta có hình chữ nhật \(ENKH\) chia thành \(4\) phần bằng nhau nên diện tích tứ giác \(PQRS\) chiếm \(2\) phần và bằng 8 \(c{m^2}\)
\({S_{AEPSN}} = {S_{AEN}} + {S_{EPSN}}\)
\(= 2 + \dfrac{16}{4} = 6\) (\(c{m^2}\))