a)
+ \(y = x + 1\)
Cho \(x=0 \Rightarrow y=0+1=1 \Rightarrow A(0; 1)\)
Cho \(x=-1 \Rightarrow y=-1+1=0 \Rightarrow B(-1; 0)\)
Đồ thị hàm số \(y = x + 1\) là đường thẳng đi qua hai điểm \(A(0; 1)\) và \(B(-1; 0)\)
+ \(y = \dfrac{1}{\sqrt 3 }x + \sqrt 3\)
Cho \(x=-3 \Rightarrow y = \dfrac{1}{\sqrt 3 }.(-3) + \sqrt 3=0 \Rightarrow D(-3; 0)\)
Cho \(x=0 \Rightarrow y = \dfrac{1}{\sqrt 3 }.0 + \sqrt 3 =\sqrt 3 \Rightarrow C(0; \sqrt 3)\)
Đồ thị hàm \(y = \dfrac{1}{\sqrt 3 }x + \sqrt 3\) là đường thẳng đi qua hai điểm \(D(-3; 0)\) và \(C(0; \sqrt 3)\)
+ \(y = \sqrt 3 x - \sqrt 3\)
Cho \(x=0 \Rightarrow y = \sqrt 3 .0 - \sqrt 3=-\sqrt 3 \Rightarrow E(0; -\sqrt 3)\)
Cho \(x=1 \Rightarrow y = \sqrt 3 .1 - \sqrt 3=0 \Rightarrow F(1; 0)\)
Đồ thị hàm số \(y = \sqrt 3 x - \sqrt 3\) là đường thẳng đi qua hai điểm \(E(0; -\sqrt 3)\) và \(F(1; 0)\)
b)
Cách 1:
+ Đường thẳng \(y = x + 1\) có hệ số góc là \(1\)
Suy ra \(tan \alpha = 1 \Leftrightarrow \alpha = 45^o\)
+ Đường thẳng \(y = \dfrac{1}{\sqrt 3 }x + \sqrt 3\) có hệ số góc là \(\dfrac{1}{\sqrt 3 }\)
Suy ra \(tan \beta = \dfrac{1}{\sqrt 3 } \Leftrightarrow \beta = 30^o\)
+ Đường thẳng \(y = \sqrt 3 x - \sqrt 3\) có hệ số góc là \(\sqrt 3\)
Suy ra \(tan \gamma = \sqrt 3 \Leftrightarrow \alpha = 60^o\)
Cách 2:
+ Quan sát hình vẽ, dễ thấy:
\(OA=OB=OF=1\), \(OE=OC=\sqrt 3\), \(OD = 3\).
+ Xét \(\Delta{OAB}\) vuông tại \(O\)
\(\Rightarrow \tan \alpha =tan\ B =\dfrac{OA}{OB}=\dfrac{1}{1}=1\)
\(\Rightarrow \alpha = 45^o\)
Thực hiện bấm máy tính:
+ Xét \(\Delta{ODC}\) vuông tại \(O\)
\(\Rightarrow \tan \beta =tan\ D =\dfrac{OC}{OD}=\dfrac{\sqrt 3}{3}\)
\(\Rightarrow \beta = 30^o\)
+ Xét \(\Delta{OEF}\) vuông tại \(O\)
\(\Rightarrow \tan \beta =tan \widehat{OFE} =\dfrac{OE}{OF}=\dfrac{\sqrt 3}{1}=\sqrt 3\)
\(\Rightarrow \gamma = 60^o\)
Lại có \(\widehat{OFE}\) và \(\gamma\) là hai góc đối đỉnh \(\Rightarrow \widehat{OFE}=\gamma\).
Vậy \(\gamma=60^o\).