a) Chu kì dao động: \(T = 2\pi \sqrt {\dfrac{l}{g}} = 2\pi \sqrt {\dfrac{1}{{9,8}}} = 2s\)
b) Ta có công thức tính động năng
\(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha - \cos {\alpha _0})} \end{array}\)
+ Tốc độ cực đại của quả cầu: \(\alpha = {0^0}\)
\({v_{\max }} = \sqrt {2.9,8.1.(\cos {0^0} - \cos {{30}^0})}\)\(= 1,62(m/s)\)
Tại \(\alpha = {10^0}\):
\(v = \sqrt {2.9,8.1.(\cos {{10}^0} - \cos {{30}^0})}\)\(= 1,53(m/s)\)