a) \(BC \bot AH\) và \(BC \bot A'H\) vì \(A'H \bot \left( {ABC} \right)\)
\( \Rightarrow BC \bot \left( {A'HA} \right) \Rightarrow BC \bot AA'\)
Và \(B'C' \bot AA'\) vì \(BC\parallel B'C'\).
b) Ta có \(AA'\parallel BB'\parallel CC'\) mà \(BC \bot AA'\) nên tứ giác BCC’B’ là hình chữ nhật.
Vì \(AA'\parallel \left( {BCC'B'} \right)\) nên ta suy ra \(MM' \bot BC\) và \(MM' \bot B'C'\) hay MM’ là đường cao của hình chữ nhật BCC’B’.