a) Ta có: \(\overrightarrow {AB} = ( - 4;5; - 1)\) và \(\overrightarrow {AC} = (0; - 1;1)\) suy ra \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = (4;4;4)\)
Do đó (ABC) có vecto pháp tuyến là \(\overrightarrow n = (4;4;4)\) hoặc \(\overrightarrow n ' = (1;1;1)\)
Suy ra phương trình của (ABC) là: (x – 5) + (y – 1) + (z – 3) = 0
hay x + y + z – 9 =0
b) Mặt phẳng \((\alpha )\) đi qua điểm D và song song với mặt phẳng (ABC) nên \((\alpha )\) cũng có vecto pháp tuyến là \(\overrightarrow n ' = (1;1;1)\)
Vậy phương trình của \((\alpha )\) là: (x – 4) + (y) + (z – 6) = 0 hay x + y + z – 10 = 0.