Bài 32 trang 91 SBT toán 8 tập 2

Đề bài

Tam giác \(ABC\) có ba góc nhọn và có trực tâm là điểm \(H.\) Gọi \(K, M, N\) thứ tự là trung điểm của các đoạn thẳng \(AH, BH, CH.\)

Chứng minh rằng tam giác \(KMN\) đồng dạng với tam giác \(ABC\) với tỉ số đồng dạng \(\displaystyle k = {1 \over 2}\).

Lời giải

 

Xét \(\Delta AHB\) có:

\(K\) là trung điểm của \(AH\) (gt)

\(M\) là trung điểm của \(BH\) (gt)

Do đó \(KM\) là đường trung bình của tam giác \(AHB\).

\( \Rightarrow  \displaystyle KM  = {1 \over 2}AB\) (tính chất đường trung bình của tam giác)

\( \Rightarrow  \displaystyle {{KM} \over {AB}} = {1 \over 2}\)              (1)

Xét \(\Delta AHC\) có:

\(K\) là trung điểm của \(AH\) (gt)

\(N\) là trung điểm của \(CH\) (gt)

Do đó \(KN\) là đường trung bình của tam giác \(AHC\).

\( \Rightarrow  \displaystyle KN = {1 \over 2}AC\) (tính chất đường trung bình của tam giác)

\( \Rightarrow  \displaystyle {{KN} \over {AC}} = {1 \over 2}\)               (2)

Xét \(\Delta BHC\) có:

\(M\) trung điểm của \(BH\) (gt)

\(N\) trung điểm của \(CH\) (gt)

Do đó \(MN\) là đường trung bình của tam giác \(BHC\).

\( \Rightarrow  \displaystyle MN  = {1 \over 2}BC\) (tính chất đường trung bình của tam giác)

\( \Rightarrow  \displaystyle {{MN} \over {BC}} = {1 \over 2}\)               (3)

Từ (1), (2) và (3) suy ra: \(  \displaystyle{{KM} \over {AB}} = {{KN} \over {AC}} = {{MN} \over {BC}} = {1 \over 2}\)

Vậy \(∆ KMN\) đồng dạng \(∆ ABC\) (c.c.c).

Ta có hệ số tỉ lệ: \(\displaystyle k  = {{KM} \over {AB}} = {1 \over 2}\).