a) Ta có hệ \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 27{\rm{ }}\left( 1 \right)\\u_1^2 + u_2^2 + u_3^2 = 275{\rm{ }}\left( 2 \right)\end{array} \right.\)
Áp dụng công thức \({u_1} + {u_3} = 2{u_2}\) suy ra \({u_2} = 9{\rm{ }}\left( 3 \right)\)
Thay \({u_2} = 9\) vào (1) và (2) ta được \(\left\{ \begin{array}{l}{u_1} + {u_3} = 18\\u_1^2 + u_3^2 = 194\end{array} \right.\)
Từ đây tìm được \({u_1} = 5,{u_3} = 13\) hoặc \({u_1} = 13,{u_3} = 5.\)
Vậy ta có hai cấp số cộng \(5,9,13\) và \(13,9,5.\)
b) Ta có:
Mặt khác, \(a = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\) \( \Rightarrow 2a = 2n{u_1} + \left( {n - 1} \right)d\) \( \Leftrightarrow {u_1} = \dfrac{{2a - \left( {n - 1} \right)d}}{{2n}}\).
Thay \({u_1}\) vào (1) ta được:
Kết quả \(d = \pm \sqrt {\dfrac{{12\left( {n{b^2} - {a^2}} \right)}}{{{n^2}\left( {{n^2} - 1} \right)}}} \);\({u_1} = \dfrac{1}{n}\left[ {a - \dfrac{{n\left( {n - 1} \right)}}{2}d} \right]\)