Bài 3.26 trang 115 SBT hình học 12

Đề bài

Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:

\((\beta )\): 3x – 2y + 2z + 7 = 0

\((\gamma )\): 5x – 4y + 3z + 1 = 0

Lời giải

Mặt phẳng \((\alpha )\) vuông góc với hai mặt phẳng \((\beta )\) và \((\gamma )\), do đó hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow {{n_\beta }}  = (3; - 2;2)\)  và \(\overrightarrow {{n_\gamma }}  = (5; - 4;3)\).

Suy ra  \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right] = (2;1; - 2)\)

Mặt khác \((\alpha )\) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là \(\overrightarrow {{n_\alpha }} \) .

Vậy phương trình của \((\alpha )\) là:  2(x – 3) + 1(y + 1) – 2(z + 5) = 0  hay 2x + y – 2z – 15 = 0.