Ta có:
\(\displaystyle \eqalign{
& \overrightarrow {PQ} = {1 \over 2}\left( {\overrightarrow {PC} + \overrightarrow {P{\rm{D}}} } \right) \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} - \overrightarrow {AP} } \right) + \left( {\overrightarrow {B{\rm{D}}} - \overrightarrow {BP} } \right)} \right] \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) - \underbrace {\left( {\overrightarrow {AP} + \overrightarrow {BP} } \right)}_{\overrightarrow 0 }} \right] \cr
& = {1 \over 2}.{1 \over k}\left( {\overrightarrow {AM} + \overrightarrow {BN} } \right) \cr} \)
Vì \(\displaystyle \overrightarrow {AC} = {1 \over k}.\overrightarrow {AM} \) và \(\displaystyle \overrightarrow {B{\rm{D}}} = {1 \over k}.\overrightarrow {BN} \)
Đồng thời \(\displaystyle \overrightarrow {AM} = \overrightarrow {AP} + \overrightarrow {PM} \) và \(\displaystyle \overrightarrow {BN} = \overrightarrow {BP} + \overrightarrow {PN} \), nên \(\displaystyle \overrightarrow {PQ} = {1 \over {2k}}\left( {\overrightarrow {PM} + \overrightarrow {PN} } \right)\) vì \(\displaystyle \overrightarrow {AP} + \overrightarrow {BP} = \overrightarrow 0 \)
Vậy \(\displaystyle \overrightarrow {PQ} = {1 \over {2k}}\overrightarrow {PM} + {1 \over {2k}}\overrightarrow {PN} \)
Do đó ba vectơ \(\displaystyle \overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.