Bài 33 trang 48 SGK Toán 8 tập 2

Đố: Trong một kì thi, bạn Chiến phải thi bốn môn Văn, Toán, Tiếng Anh và Hóa. Chiến đã thi ba môn và được kết quả như bảng sau:

Môn

Văn

Tiếng Anh

Hóa

Điểm

8

7

10

Kì thi quy định muốn đạt loại giỏi phải có điểm trung bình các môn thi là 8 trở lên và không có môn nào bị điểm dưới 6. Biết môn Văn và Toán được tính hệ số 2. Hãy cho biết, để đạt loại giỏi bạn Chiến phải có điểm thi môn Toán ít nhất là bao nhiêu?

Lời giải

Gọi \(x\) là điểm thi môn Toán, theo đề bài ta có điều kiện: \(6 ≤ x ≤ 10\).

Điểm trung bình của bốn môn:

\(\dfrac{{8.2 + 7 + 10 + x.2}}{6} = \dfrac{{33 + 2x}}{6}\)

Để được xếp loại giỏi thì điểm trung bình các môn thi là 8 trở lên nên ta có bất phương trình:

\(\dfrac{{33 + 2x}}{6} \geqslant 8\)

\( \Leftrightarrow 33 + 2x \geqslant 8.6\)

\(⇔33 + 2x ≥ 48\)

\( \Leftrightarrow 2x \geqslant 48 - 33\)

\(⇔2x ≥ 15\)

\( \Leftrightarrow x \geqslant 15:2\)

\(⇔x ≥ 7,5\)

Vậy để đạt được loại giỏi thì bạn Chiến phải có điểm thi môn Toán ít nhất là \(7,5\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”