Hàm số \(y = 2x + \left( {3 + m} \right)\) có \(a = 2\) và \(b = 3 + m\)
Hàm số \(y = 3x + \left( {5 - m} \right)\) có \(a' = 3\) và \(b' = 5 - m\)
Hai đồ thị hàm số \(y = 2x + \left( {3 + m} \right)\) và \(y = 3x + \left( {5 - m} \right)\) cắt nhau tại 1 điểm trên trục tung khi \(\left\{ \begin{array}{l}a \ne a'\\b = b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 \ne 3\left( {luôn\,\,đúng} \right)\\3 + m = 5 - m\end{array} \right. \Rightarrow 2m = 2 \Leftrightarrow m = 1\)
Vậy \(m = 1\) thì hai đồ thị hàm số cắt nhau tại 1 điểm trên trục tung.