a)
\(\displaystyle \left. \matrix{
BC \bot AB \hfill \cr
BC \bot SA \hfill \cr} \right\} \Rightarrow BC \bot \left( {SAB} \right) \) \(\displaystyle \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)
b) \(\displaystyle AH \bot SB\) mà SB giao tuyến của hai mặt phẳng vuông góc là (SBC) và (SAB) nên \(\displaystyle AH \bot \left( {SBC} \right)\).
c) Xét tam giác vuông SAB với đường cao AH ta có:
\(\displaystyle {1 \over {A{H^2}}} = {1 \over {A{S^2}}} + {1 \over {A{B^2}}} \) \(\displaystyle = {1 \over {{a^2}}} + {1 \over {2{a^2}}} = {3 \over {2{a^2}}}\)
Vậy \(\displaystyle AH = {{a\sqrt 6 } \over 3}\)
d) Vì \(\displaystyle OK \bot \left( {SBC} \right)\) mà \(\displaystyle AH \bot \left( {SBC} \right)\) nên \(\displaystyle OK\parallel AH\), ta có K thuộc CH.
\(\displaystyle OK = {{AH} \over 2} = {{a\sqrt 6 } \over 6}\).