Bài 3.31 trang 130 SBT hình học 12

Đề bài

Viết phương trình tham số, phương trình chính tắc của đường thẳng \(\Delta \) trong các trường hợp sau:

a) \(\Delta \) đi qua điểm A(1; 2; 3) và có vecto chỉ phương \(\overrightarrow a  = (3;3;1)\);

b) \(\Delta \) đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng \((\alpha )\):  2x – y + z + 9 = 0

c) \(\Delta \) đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)

Lời giải

a) Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm A(1; 2; 3) và có vecto chỉ phương \(\overrightarrow a  = (3;3;1)\) là: \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 3t}\\{y = 2 + 3t}\\{z = 3 + t}\end{array}} \right.\)

Phương trình chính tắc của \(\Delta \) là \(\dfrac{{x - 1}}{3} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{1}\)

b)  \(\Delta  \bot (\alpha )\)\( \Rightarrow \overrightarrow {{u_\Delta }}  = \overrightarrow {{n_{\left( \alpha  \right)}}}  = (2; - 1;1)\)

Phương trình tham số của \(\Delta \) là  \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y =  - t}\\{z =  - 1 + t}\end{array}} \right.\)

Phương trình chính tắc của \(\Delta \) là  \(\dfrac{{x - 1}}{2} = \dfrac{y}{{ - 1}} = \dfrac{{z + 1}}{1}\)

c) \(\Delta \) đi qua hai điểm C và D nên có vecto chỉ phương \(\overrightarrow {CD}  = (1;2;3)\)

Vậy phương trình tham số của \(\Delta \) là  \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y =  - 1 + 2t}\\{z = 1 + 3t}\end{array}} \right.\)

Phương trình chính tắc của \(\Delta \) là  \(\dfrac{{x - 1}}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z - 1}}{3}\)